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Model Averaging



Combining Models

Three methods to combine models

1. Continuous Model Expansion
2. Discrete Model Expansion
3. Bayesian Model Averaging



Continuous Model Exapansion

▶ Write a larger model that nests the model you are using.
▶ Can add either

▶ more data, e.g. hierarchical model
▶ more parameters

▶ Upside: more flexible, can use shrinkage to avoid overfitting
▶ Downside: increased computation



Continuous Model Expansion: Student-t

Normal distribution is Student-t with degrees of freedom ∞.

𝖭𝗈𝗋𝗆𝖺𝗅(𝑦|𝜎, 𝜇) = 𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖳(𝑦|𝜈 = ∞, 𝜇, 𝜎)



Continuous Model Expansion: Regression

Special case:
𝖭𝗈𝗋𝗆𝖺𝗅(𝑦|𝜇, 𝜎)

General case:
𝖭𝗈𝗋𝗆𝖺𝗅(𝑦𝑖|𝜇𝑖, 𝜎𝑖)

▶ Model 𝜇𝑖 with regression
▶ Heteroskedasticity model for 𝜎𝑖



Continuous Model Expansion: Regression

Special case: Observation 𝑖 in group 𝑘 ∈ 1 ∶ 𝐾,

𝖭𝗈𝗋𝗆𝖺𝗅(𝑦𝑖,𝑘|𝛼 + 𝑋𝑖𝛽, 𝜎)

General case: Different intercepts and slopes for each group.

𝖭𝗈𝗋𝗆𝖺𝗅(𝑦𝑖,𝑘|𝛼𝑖,𝑘 + 𝑋𝛽𝑖,𝑘, 𝜎)



Discrete Model Expansion (Mixture Models)

Suppose we have ℳ = {𝑀1, … , 𝑀𝐾}.

𝑝(𝑦) =
𝐾

∑
𝑘=1

𝜋𝑘𝑝(𝑦|𝑀𝑘)

▶ Mixture models: 𝜋𝑘 is a parameter
▶ Bayesian Model Averaging: plug-in a value for 𝜋𝑘



Discrete Model Expansion

▶ Like continuous model expansion: directly estimate a
meta-model.

▶ Unless truly “discrete” models, usually a second-best
approximation to a continuous model expansion

▶ Can be computationally difficult, which is why BMA/model
selection are used.



Bayes factors



Posterior Probability for a Model

Think of a model, 𝑀 , as just another discrete parameter.

What is the posterior probability of 𝑀 given data 𝑦?

𝑝(𝑀|𝑦) = 𝑝(𝑦|𝑀)𝑝(𝑀)
𝑝(𝑦)



Bayes Factor

Evidence for 𝑀2 over model 𝑀1 is the ratio of their posterior
distributions.

𝑝(𝑀2|𝑦)
𝑝(𝑀1|𝑦) = 𝑝(𝑦|𝑀2)

𝑝(𝑦|𝑀1)⏟
Bayes Factor

×𝑝(𝑀2)
𝑝(𝑀1)



Problem: Bayes Factors Depend on Priors

Bayes Factor(𝑀2; 𝑀1) = 𝑝(𝑦|𝑀2)
𝑝(𝑦|𝑀1)

where
𝑝(𝑦|𝑀𝑘) = ∫ 𝑝(𝜃𝑘|𝑀𝑘)𝑝(𝑦|𝜃𝑘, 𝑀𝑘)𝑑 𝜃𝑘

▶ Problem: Marginal likelihood integrates over 𝜃!
▶ Implications:

▶ Model comparison extremely sensitive to priors, in ways that
posterior calculation is not.

▶ Cannot use improper priors (or make adjustments)
▶ Marginal likelihood hard to compute.



Bayes Factors

▶ Intuitive way to compare models
▶ Not that useful in practice; rarely used in practice
▶ Marginal likelihoods hard to compute
▶ Sensitivity to priors is major issue



Bayesian Model Averaging



Bayesian Model Averaging

▶ Given ℳ = {𝑀1, … , 𝑀𝐾} models:

𝑝(𝜃|𝑦) =
𝐾

∑
𝑘=1

⎛⎜
⎝

𝑝(𝜃|𝑀𝑘, 𝑦)⏟⏟⏟⏟⏟
posterior of 𝑀𝑘

× 𝑝(𝑀𝑘|𝑦)⏟
model prior

⎞⎟
⎠

▶ Weighted average of 𝜃 estimated for each model
▶ Unlike mixture model, models estimated separately, and

averaging is post-hoc
▶ Problem: 𝑝(𝑀𝑘|𝑦) require marginal likelihoods.



BMA in practice

▶ Several good implementations in R packages: BMA, BMS
▶ Generally focus on linear models where some shortcuts

available for calculating Bayes Factors
▶ In linear models big problem is (intelligently) sampling the

large space (2𝑝) of models
▶ Regularization, shrinkage, and sparse shrinkage models can

often handle regression case better
▶ Calculating marginal likelihood in general case hard, use of

approximation like BIC common
▶ Use pseudo-BMA weights based on prediction
▶ Theory based on ℳ-complete world, but that’s not the case



Spaces of Models

▶ models being compared: ℳ = {𝑀1, … , 𝑀𝐾}
▶ true model: ℳ𝑡
▶ reference model: ℳ𝑟

View Description
ℳ-closed 𝑀𝑡 in ℳ
ℳ-open 𝑀𝑡 not in ℳ
ℳ-completed 𝑀𝑡 not in ℳ, but 𝑀𝑟 is.

▶ prediction methods: ℳ-open or ℳ-completed
▶ Bayesian model averaging, Bayes factors, BIC and methods

using marginal likelihoods: ℳ-closed



PSIS-LOO



What does PSIS-LOO do?

PSIS-LOO = Pareto smoothed importance sample leave-one-out
(cross-validation)

▶ leave-one-out cross-validation: that’s what it’s doing.
LOO-CV where model trained on 𝑛 − 1 observations, and
predicts the one held-out obs.

▶ importance sampling: running LOO-CV requires running the
model 𝑛 times. But 𝑝(𝑡ℎ𝑒𝑡𝑎|𝑦) ≈ 𝑝(𝜃|𝑦−𝑖), so use importance
sampling to avoid that.

▶ Pareto smoothed: IS on it’s own won’t work, so we need to
regularize it



What should you use?
▶ Use PSIS-LOO (Vehtari, Gelman, and Gabry 2015)

implemented in the loo package:
▶ computationally efficient
▶ fully Bayesian, unlike AIC and DIC
▶ perform better than WAIC
▶ indicators for when it is a poor approximation (unlike AIC, DIC,

and WAIC)

▶ if still too slow use WAIC, it’s next best approximation
▶ No reason to use AIC or DIC ever; BIC does something

different
▶ For observations which the PSIS-LOO has 𝑘 > 0.7 use

LOO-CV
▶ If too many observations fail PSIS-LOO, use k-fold CV
▶ If the likelihood doesn’t easily partition into observations or

LOO is not an appropriate prediction task, use the appropriate
CV method.
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