Model Selection, Comparison, Averaging

Jeffrey Arnold

May 3, 2018

Model Averaging

Three methods to combine models

- 1. Continuous Model Expansion
- 2. Discrete Model Expansion
- 3. Bayesian Model Averaging

Continuous Model Exapansion

- ▶ Write a larger model that nests the model you are using.
- Can add either
 - more data, e.g. hierarchical model
 - more parameters
- Upside: more flexible, can use shrinkage to avoid overfitting
- Downside: increased computation

Continuous Model Expansion: Student-t

Normal distribution is Student-t with degrees of freedom $\infty.$

$$\mathsf{Normal}(y|\sigma,\mu) = \mathsf{StudentT}(y|\nu = \infty,\mu,\sigma)$$

Continuous Model Expansion: Regression

Special case:

 $\mathsf{Normal}(y|\mu,\sigma)$

General case:

 $\mathsf{Normal}(y_i|\mu_i,\sigma_i)$

- Model μ_i with regression
- Heteroskedasticity model for σ_i

Continuous Model Expansion: Regression

Special case: Observation i in group $k \in 1 : K$,

 $\mathsf{Normal}(y_{i,k}|\alpha + X_i\beta,\sigma)$

General case: Different intercepts and slopes for each group.

 $\mathsf{Normal}(y_{i,k} | \alpha_{i,k} + X \beta_{i,k}, \sigma)$

Discrete Model Expansion (Mixture Models)

Suppose we have $\mathcal{M} = \{M_1, \dots, M_K\}.$

$$p(y) = \sum_{k=1}^K \pi_k p(y|M_k)$$

- Mixture models: π_k is a parameter
- ▶ Bayesian Model Averaging: plug-in a value for π_k

Discrete Model Expansion

- Like continuous model expansion: directly estimate a meta-model.
- Unless truly "discrete" models, usually a second-best approximation to a continuous model expansion
- Can be computationally difficult, which is why BMA/model selection are used.

Bayes factors

Posterior Probability for a Model

Think of a model, M, as just another discrete parameter. What is the posterior probability of M given data y?

$$p(M|y) = \frac{p(y|M)p(M)}{p(y)}$$

Evidence for M_2 over model M_1 is the ratio of their posterior distributions.

$$\frac{p(M_2|y)}{p(M_1|y)} = \frac{p(y|M_2)}{\underbrace{p(y|M_1)}_{\text{Bayes Factor}}} \times \frac{p(M_2)}{p(M_1)}$$

Problem: Bayes Factors Depend on Priors

Bayes
$$\mathsf{Factor}(M_2;M_1) = \frac{p(y|M_2)}{p(y|M_1)}$$

where

$$p(y|M_k) = \int p(\theta_k|M_k) p(y|\theta_k,M_k) d\,\theta_k$$

Problem: Marginal likelihood integrates over *θ*!

Implications:

- Model comparison extremely sensitive to priors, in ways that posterior calculation is not.
- Cannot use improper priors (or make adjustments)
- Marginal likelihood hard to compute.

Bayes Factors

- Intuitive way to compare models
- ▶ Not that useful in practice; rarely used in practice
- Marginal likelihoods hard to compute
- Sensitivity to priors is major issue

Bayesian Model Averaging

Bayesian Model Averaging

• Given
$$\mathcal{M} = \{M_1, \dots, M_K\}$$
 models:

$$p(\boldsymbol{\theta}|\boldsymbol{y}) = \sum_{k=1}^{K} \left(\underbrace{p(\boldsymbol{\theta}|\boldsymbol{M}_k,\boldsymbol{y})}_{\text{posterior of }\boldsymbol{M}_k} \times \underbrace{p(\boldsymbol{M}_k|\boldsymbol{y})}_{\text{model prior}} \right)$$

- \blacktriangleright Weighted average of θ estimated for each model
- Unlike mixture model, models estimated separately, and averaging is post-hoc
- **Problem:** $p(M_k|y)$ require marginal likelihoods.

BMA in practice

- Several good implementations in R packages: BMA, BMS
- Generally focus on linear models where some shortcuts available for calculating Bayes Factors
- In linear models big problem is (intelligently) sampling the large space (2^p) of models
- Regularization, shrinkage, and sparse shrinkage models can often handle regression case better
- Calculating marginal likelihood in general case hard, use of approximation like BIC common
- Use pseudo-BMA weights based on prediction
- \blacktriangleright Theory based on $\mathcal M\text{-}complete$ world, but that's not the case

Spaces of Models

- \blacktriangleright models being compared: $\mathcal{M} = \{M_1, \dots, M_K\}$
- ▶ true model: \mathcal{M}_t
- \blacktriangleright reference model: \mathcal{M}_r

View	Description
\mathcal{M} -closed	M_t in $\mathcal M$
${\mathcal M} ext{-open}$	M_t not in $\mathcal M$
$\mathcal M\text{-}completed$	M_t not in $\mathcal M_{\rm r}$ but M_r is.

- ▶ prediction methods: \mathcal{M} -open or \mathcal{M} -completed
- ▶ Bayesian model averaging, Bayes factors, BIC and methods using marginal likelihoods: *M*-closed

PSIS-LOO

What does PSIS-LOO do?

 $\label{eq:PSIS-LOO} {\sf PSIS-LOO} = {\sf Pareto\ smoothed\ importance\ sample\ leave-one-out\ (cross-validation)}$

- ▶ leave-one-out cross-validation: that's what it's doing. LOO-CV where model trained on n − 1 observations, and predicts the one held-out obs.
- ▶ importance sampling: running LOO-CV requires running the model *n* times. But $p(theta|y) \approx p(\theta|y_{-i})$, so use importance sampling to avoid that.
- Pareto smoothed: IS on it's own won't work, so we need to regularize it

What should you use?

- Use PSIS-LOO (Vehtari, Gelman, and Gabry 2015) implemented in the loo package:
 - computationally efficient
 - fully Bayesian, unlike AIC and DIC
 - perform better than WAIC
 - indicators for when it is a poor approximation (unlike AIC, DIC, and WAIC)
- ▶ if still too slow use WAIC, it's next best approximation
- No reason to use AIC or DIC ever; BIC does something different
- \blacktriangleright For observations which the PSIS-LOO has k>0.7 use LOO-CV
- ▶ If too many observations fail PSIS-LOO, use k-fold CV
- If the likelihood doesn't easily partition into observations or LOO is not an appropriate prediction task, use the appropriate CV method.